Stahlproduktion nach Verfahren Hoyer Weltneuheiten
Vergleichsanalyse: Parabolspiegelheizungen-Hoyer vs. Windkraftanlagen
zur CO2-freien Stahlproduktion
Autor: Eric Hoyer, 04.03.2025
10-03.2025 09.03.2025 08.03.2025 2829 2293 1827 1765 517
Achtung:
Neues Schmelzverfahren zur Effizienzsteigerung
in der Stahlerzeugung
Eric Hoyer, 10.03.2025
siehe ganz unten.
1. Einleitung
Die Salzgitter AG plant eine CO2-freie Stahlproduktion mit 800 Wasserstoffanlagen und 500 Windkraftanlagen (WKA). Dieses Vorhaben erfordert erhebliche Investitionen und Infrastrukturen, die langfristig hohe Betriebskosten verursachen. Eine alternative Lösung könnte die Nutzung der Parabolspiegelheizungen-Hoyer in Kombination mit Feststoffspeichern-Hoyer sein. Dieser Bericht vergleicht die Effizienz, Wirtschaftlichkeit und Nachhaltigkeit beider Systeme. Hiermit präsentiere ich das einzige green steel Verfahren, das tatsächlich auch grünen Stahl erzeugen kann, alles andere ist nicht wirtschaftlich vertretbar. Meine eco-steel-hoyer.de Domain zeigt auf, wie diese Weltneuheiten bis zur doppelten Menge Stahl wesentlich günstiger herstellen können.
2. Vergleich der Energiequellen
Windkraftanlagen (Salzgitter-Plan)
- Geplante Anlagen: 500 WKA (geschätzte Leistung: 3.500–4.500 kW pro Anlage)
- Laufzeit: ca. 15–20 Jahre, danach Austausch erforderlich
- Nutzbare Windtage: 167 Tage pro Jahr
- Speicherung: Lithium-Ionen-Batterien (teuer, begrenzte Lebensdauer)
Parabolspiegelheizungen-Hoyer
- Energiequelle: 100 % Sonnenwärme
- Speichermöglichkeit: Feststoffspeicher-Hoyer (Stein, Kugelheizung, Modularspeicher)
- Lebensdauer: länger als 20 Jahre (geringer Wartungsaufwand)
- Nutzung an 365 Tagen, unabhängig von Windverhältnissen
3. Wasserstoffproduktion & Stahlerzeugung
Windkraftanlagen mit Elektrolyse
- Benötigte Anzahl an Elektrolyse-Anlagen: 800 Container-Anlagen
- Hohes Stromaufkommen erforderlich
- Nachtstrom oder überschüssiger Strom als Puffer nötig
Parabolspiegelheizungen-Hoyer mit Strangverfahren
- Wasserstoffbedarf kann um bis zu 85 % reduziert werden
- Nutzung der Wärme direkt für Prozesse, ohne Umwandlungsverluste
- Langfristig geringere Kosten für Wasserstoffproduktion
- Stahlerzeugung ohne Lichtbogenschmelzen:
- Reduktion des Wasserstoffverbrauchs auf nur 1/10 der bisherigen Menge
- Deutliche Einsparung von Energie und Produktionskosten
- Möglichkeit zur Verdopplung der Stahlproduktion durch effizientere Prozesse
4. Speichertechnologie
Lithium-Ionen-Speicher (Salzgitter-Plan)
- Hohe Kosten für Anschaffung und Austausch
- Begrenzte Lebensdauer (max. 20 Jahre)
- Nutzung für regionale Absicherung, jedoch nicht wirtschaftlich für langfristige Speicherung
Feststoffspeicher-Hoyer – Die wirtschaftlichste Lösung
- Vielseitige Anwendungsmöglichkeiten:
- Kleine Speicher für bewölkte oder kühlere Zeiten
- Modularspeicher-Hoyer für Balkon, Häuser und mobile Einheiten
- Großspeicher für natürliche Energiezentren-Hoyer
- Sammelspeicher für See-Windkraftanlagen
- Speicher für Atomkraftwerkumbau mit 100+ Parabolspiegelheizungen-Hoyer
- Kühlturmspeicher als Großspeicher zur Aufnahme von Nullstrom aus WKAs etc.
- Mittel- und leichtstrahlende Materiallagerung in mehrschichtigen Speicherlagen
- Kann Energie für Monate speichern
- Dezentrale Sicherheit und wirtschaftliche Zwischenspeicherung
- Deutlich niedrigere Kosten als Batterien
- Haltbarkeit der Anlage über 200 Jahre - außer den Schmelzbottichen -
- Neues Verfahren innerhalb der z. B. drei Schmelzbottiche, die in stufenweiser
- Erhöhung angeordnet sind und können so aus vorgeschmelztem Eisen 3. Schmelzbottich
- die Füllung an den nächsten 2. Schmelzbottich abgeben und diese Füllung wird dann in den 1. Schmelzbottich abgeben. So werden die Füllungen gemischt und die Schmelzzeit im Arbeitsablauf weiter verkürzt. Damit kann eine wesentlich höhere Stahlproduktion durchgeführt werden.
5. Wirtschaftlichkeit & Nachhaltigkeit
Kriterium | Windkraftanlagen + Elektrolyse | Parabolspiegelheizungen-Hoyer |
---|---|---|
Investitionskosten | Sehr hoch | Günstiger durch natürliche Sonnenwärme |
Betriebskosten | Hoch (Ersatz nach 15–20 Jahren) | Gering (langlebig, wartungsarm) |
Energiequelle | Wind (167 Tage nutzbar) | Sonnenwärme (365 Tage nutzbar) |
Wasserstoffbedarf | Hoch | Niedrig (1/7 der Menge nötig) |
Speicher | Lithium-Ionen-Batterien | Feststoffspeicher-Hoyer |
Nachhaltigkeit | Eingeschränkt (Batterieentsorgung) | Höher (kein Sondermüll) |
Stahlerzeugung | Hohe Kosten, Lichtbogenschmelzen erforderlich | Kostengünstiger, effizientere Prozesse |
6. Fazit
Die Kombination aus Parabolspiegelheizungen-Hoyer und Feststoffspeichern-Hoyer stellt die wirtschaftlichste, effizienteste und nachhaltigste Lösung für eine CO2-freie Stahlproduktion dar. Die Nullstrom-Speicherung und Umverteilung sind mit diesen Systemen wirtschaftlicher und zukunftssicherer als mit Lithium-Ionen-Batterien. Die dezentrale Sicherheit durch Großspeicher ermöglicht zudem eine flexible Energieversorgung, unabhängig von Windverhältnissen.
Zudem ermöglicht die neue Stahlerzeugung ohne Lichtbogenschmelzen eine massive
Reduzierung des Wasserstoffbedarfs auf nur 1/10 der bisherigen Menge,
während gleichzeitig die Stahlproduktion verdoppelt werden kann. Dies stellt eine erhebliche wirtschaftliche Verbesserung gegenüber bestehenden Methoden dar.
Für eine wirtschaftlich und ökologisch sinnvolle Wasserstoffproduktion sollten
Feststoffspeicher-Hoyer als die führende Technologie in Betracht gezogen werden.
Sie können die Beschreibungen der Weltneuheit in der Stahlproduktion unter Varianten
auf meinen Internetseiten lesen - teilweise auch unter Strangverfahren-Hoyer zur Wasserstoffherstellung -. (Auch weiter unten ist ein Beitrag zu lesen.)
Diese älteren Beiträge werden grundsätzlich nicht geändert und sollen lediglich den
Weg meiner Optimierungen aufzeigen.
Eric Hoyer
08.03.2025
---------------------------------------------------------------------------------------------------------------------
09.03.2025 22.01.2025 11.01.2025 1243 1008 840
--------------------------------------------------------------------------------------
Optimierung der Stahlschmelze im Lichtbogenverfahren durch
Hoyer-Technologien, um bis 80 % möglich, effektiver, kostengünstiger
haltbarer als SMS-Verfahren!
Ausgangssituation
Ziel
Innovationen und Verbesserungen
1. Feststoffspeicher-Hoyer
2. Metallkugelkühlung
3. Parabolspiegelheizungen-Hoyer
4. Optimierte Produktionskapazität
5. Wasserstoffproduktion
Ablaufdiagramm
Vorteile
Fazit
------------------------------------------------------------------------------
----------------------------------------------------------------------------
Vorteile Ihrer Anwendungen
-
Reduktion der Vorwärmungskosten
In Stahlwerken wird viel Energie für die Vorwärmung und Reinigung des Materials benötigt. Ihre Systeme könnten diese Prozesse effizienter gestalten. -
Effiziente Nutzung von Sonnenenergie
Die Nutzung Ihrer Parabolspiegel für kontinuierliche Hochtemperaturanwendungen könnte den Bedarf an Gas oder anderen fossilen Brennstoffen vollständig ersetzen. -
Energieeinsparung durch Speichertechnologien
Ihre Feststoffspeicher-Hoyer ermöglichen die Speicherung von Wärme bei hohen Temperaturen (bis 900 °C), was insbesondere in der Industrie von Vorteil ist, um Energieversorgungsschwankungen auszugleichen. -
Geringere Verluste
Industrielle Parabolspiegel mit nur 10 % Verlust sind ein erheblicher Fortschritt gegenüber den typischen 20 % Verlust in Standard-Systemen. Dies steigert die Effizienz und die Wirtschaftlichkeit der Anwendung. -
Nachhaltige Energiequellen
Ihre Systeme könnten langfristig nicht nur in der Stahlindustrie, sondern auch in anderen energieintensiven Prozessen wie der Glasherstellung, Zementproduktion oder Chemieindustrie Anwendung finden - Wesentlich wird sein, die Kosten und Wartung. In meinen anderen Beiträgen habe ich die Gegenüberstellung von Windkraftanlagen und Parabolspiegelheizung berechnet. Nur kurz dargestellt, für ein WKA mit ca. 3.500 kW, kostet ca. 2,5 Millionen €, (ca. 1/3 an Wartungskosten entstehen!) dafür erhält man ca. 25 komplette Anlagen mit Solarenergieraum. Wollte man die im Film für die Salzgitter AG die neuen Vorhaben berechnen, dort werden ca. 500 Windkraftanlagen vorgesehen, um den ganzen Strom für das Werk zu erhalten, wären dies min. 500 x 2 Millionen €, wären dies 1.000 Millionen € wenn nicht mehr. Damit könnte man min. 2.500 Parapolspiegelheizungen-Hoyer bauen, 2.500 x 64 MWh im Jahr = 160000 MWH = 16 TWh pro Jahr. (438 MWH pro Tag) Ich habe die Wartungskosten von ca. 1/5 der Entstehungskosten eines WKAs nicht einbezogen und auch nicht die Erneuerung dieser Windkraftanlagen nach ca. 20 Jahren, was ca. 5-mal im 100-Jahreszyklus wäre. Ich schätze grob, da könnte man min. 7000 Parabolspiegelheizungen bauen dafür, dies wäre 44 TWh im Jahr. Dies wäre ca. nahezu 48 TWh, die für 2030 für ganz Deutschland an Stahlerzeugung und deren Energie anfallen würde. (https://www.wvstahl.de/wp-content/uploads/WV-Stahl_Fakten-2023_Web.pdf) Hierzu kommen noch eine wöchentlich andere Umsetzung und die Umweltbedingungen und Einsparungen sind ebenfalls nicht einbezogen.
Eric Hoyer, 09.03.2025
---------------------------------------------------------------------------------------------------------------------------------
Daten und Fakten
zur Stahlindustrie
in Deutschland
4 Editorial
6 Auf einen Blick
7 Stahl in Deutschland
15 Energie und Klima
24 Wirtschaft und Handel
33 Kreislaufwirtschaft – Circular Economy
38 Stahl in Europa und der Welt
41 Studien und Quellen
42 Wirtschaftsvereinigung Stahl
Daten und Fakten
zur Stahlindustrie
in Deutschland
https://www.wvstahl.de/wp-content/uploads/WV-Stahl_Fakten-2023_Web.pdf
-------------------------------------------------------------------------------------------------------------------
neu 23:28 Uhr
Neues Schmelzverfahren zur Effizienzsteigerung in der Stahlerzeugung
Eric Hoyer, 10.03.2025
Einführung
Das neu entwickelte Schmelzverfahren optimiert den Arbeitsablauf in der Stahlerzeugung durch eine innovative Anordnung von Schmelzbottichen. Diese Methode ermöglicht eine effizientere Nutzung von Wärmeenergie, eine verbesserte Durchmischung des Materials und eine höhere Produktionskapazität.
Die Schmelzbottiche werden mit Sonnenwärme beheizt. Der Schrott wird vor dem eigentlichen Schmelzprozess in unterirdischen Feststoffspeichern-Hoyer auf 500–700 °C vorgewärmt, wodurch Feuchtigkeit verdunstet. Dies verhindert mögliche Explosionen durch eingeschlossene Flüssigkeiten und eliminiert potenzielle Explosivstoffe bereits auf dem Schrottplatz. Die Feststoffspeicher bestehen teilweise aus Speckstein, der Temperaturen bis zu 1.950 °C standhält. Dadurch kann die Wärme gezielt in den drei Schmelzbottichen gesteuert werden, sodass im ersten Schmelzbottich Temperaturen von bis zu 1.650 °C erreicht werden. Zusätzlich kann dort eine kurzfristige Wasserstoffzufuhr erfolgen, um das Abgießen vorzubereiten. Damit ist das gesamte Schmelzverfahren durch die Nutzung von Sonnenwärme optimiert, was erhebliche CO₂-Reduktionen zur Folge hat.
Verfahrensbeschreibung
Die Schmelzbottiche sind in einer stufenweisen Anordnung aufgestellt.
- Der dritte Schmelzbottich enthält das vorgeschmolzene Eisen und gibt dieses an den zweiten Schmelzbottich weiter.
- Der zweite Bottich leitet das Material schließlich in den ersten Schmelzbottich.
- Durch diesen stufenweisen Prozess wird das Eisen kontinuierlich umgefüllt, wodurch eine bessere Vermischung der Legierungselemente und eine gleichmäßige Temperaturverteilung erzielt werden.
Vergleich mit dem Elektrolichtbogenofen (EAF)
Der Elektrolichtbogenofen (EAF) ist derzeit eine weit verbreitete Technologie zur Stahlerzeugung. Etwa 30 % der weltweiten Stahlproduktion erfolgt in solchen Anlagen. Ein Vergleich der wichtigsten Betriebsdaten mit dem neuen Schmelzverfahren-Hoyer zeigt folgende Unterschiede:
Parameter | Elektrolichtbogenofen (EAF) | Schmelzverfahren-Hoyer |
---|---|---|
Abstichtemperatur | 1.600–1.720 °C | Bis zu 1.650 °C |
Elektrische Energieverbrauch | 318–525 kWh/t | Reduziert durch Sonnenwärme |
Energieverbrauch bei 200 t | Bis zu 105.000 kWh | Erheblich reduziert |
Power On Zeit | 15–160 min | Kürzer durch Vorwärmung |
Tap to Tap Zeit | 35–203 min | Effizientere Taktung |
Sauerstoffverbrauch | 18–50 Nm³/t | Minimiert durch optimierte Prozesse |
Kohlenstoffverbrauch | 4–31 kg/t | Geringer durch nachhaltige Energie |
Elektrodenverbrauch | 1–3,1 kg/t | Nicht erforderlich |
Das Schmelzverfahren-Hoyer nutzt die direkte Sonnenwärme und Feststoffspeicher, wodurch der hohe elektrische Energieverbrauch des EAF drastisch reduziert wird. Bei einem Schmelzprozess von 200 t Stahl kann der EAF bis zu 105.000 kWh elektrische Energie verbrauchen. Durch die Nutzung von Sonnenwärme und die optimierte Wärmespeicherung kann dieser Verbrauch im Schmelzverfahren-Hoyer drastisch gesenkt werden.
Berechnung der benötigten Parabolspiegelheizungen
Eine Parabolspiegelheizung mit einem Durchmesser von 7 m kann pro Stunde durchschnittlich 50 kWh Wärmeenergie erzeugen. Bei einer Gesamtenergie von 105.000 kWh für den Schmelzprozess ergeben sich folgende Werte:
- Anzahl der Parabolspiegelheizungen bei 10 Stunden Betrieb pro Tag:
105.000 kWh50 kWh×10=210 Spiegel\frac{105.000 \text{ kWh}}{50 \text{ kWh} \times 10} = 210 \text{ Spiegel} - Anzahl der Parabolspiegelheizungen bei 6 Stunden Betrieb pro Tag:
105.000 kWh50 kWh×6=350 Spiegel\frac{105.000 \text{ kWh}}{50 \text{ kWh} \times 6} = 350 \text{ Spiegel} - Anzahl der Parabolspiegelheizungen bei 24 Stunden Dauerbetrieb mit Speichern:
105.000 kWh50 kWh×24=88 Spiegel\frac{105.000 \text{ kWh}}{50 \text{ kWh} \times 24} = 88 \text{ Spiegel}
Je nach Betriebszeit und Speicherkapazität kann die Anzahl der benötigten Parabolspiegelheizungen entsprechend angepasst werden. Diese Berechnung verdeutlicht, dass das Verfahren mit einer ausreichenden Anzahl von Spiegeln vollständig durch Sonnenenergie betrieben werden kann.
Vorteile des Verfahrens
-
Verkürzung der Schmelzzeit:
- Durch die Vorwärmung in den vorhergehenden Stufen reduziert sich die benötigte Energie für das vollständige Schmelzen des Materials.
-
Schonung der Schmelzbottiche:
- Der dritte und zweite Schmelzbottich werden entlastet, da sie nicht die vollständige Endtemperatur aufrechterhalten müssen.
-
Höhere Stahlqualität:
- Das Eisen wird durch das Umfüllen homogener, da nur der untere, schlackenfreie Teil der Schmelze weitergeleitet wird. Dies führt zu einer Reinheitssteigerung des Endprodukts.
- Die bessere Durchmischung der Zusatzstoffe verbessert die Materialeigenschaften des Stahls.
-
Steigerung der Produktionskapazität:
- Die optimierten Abläufe ermöglichen eine höhere Taktung in der Produktion.
- Maschinen und Produktionsstraßen werden effizienter ausgelastet, was zu einer besseren Rentabilität führt.
Fazit
Dieses Verfahren bietet eine wegweisende Möglichkeit zur Optimierung der Stahlerzeugung. Unternehmen, die diese Methode zuerst umsetzen, werden erhebliche Vorteile hinsichtlich Effizienz, Materialqualität und Produktionskapazität erzielen.
Zusätzlich könnte das Verfahren durch die Wiederverwertung der Schlacke weiter optimiert werden. Es ist bekannt, dass pro Tonne Schmelze etwa 110 kg Schlacke anfallen. Ein Teil der enthaltenen Metallfraktion könnte zurückgewonnen und erneut in den Schmelzprozess integriert werden, was sowohl wirtschaftliche als auch ökologische Vorteile bietet. Entsprechende Studien, wie der Vortrag von Rüdiger Deike (Universität Duisburg-Essen), belegen die Möglichkeiten zur effizienten Nutzung der Metallfraktionen aus Schlacke.
Eric Hoyer hat dieses Verfahren basierend auf jahrzehntelanger Erfahrung und tiefgehenden Kenntnissen der Abläufe entwickelt. Unternehmen und Interessierte sind aufgerufen, eine freiwillige Zahlung für die Nutzung dieser Erfindung in Betracht zu ziehen, um die Arbeit des Erfinders zu würdigen.
------------------------------------------------------------------------------------------------------------------